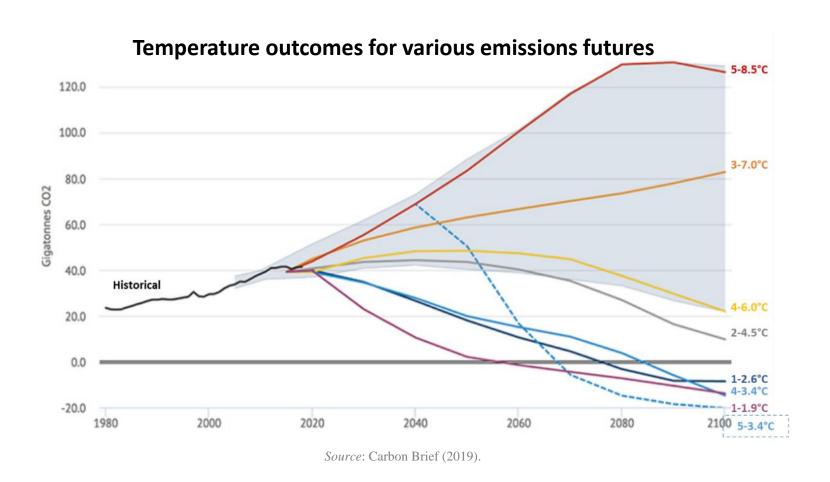


MEETING CLIMATE CHANGE TARGETS THE ROLE OF NUCLEAR ENERGY

Michel BERTHELEMY

Division of Nuclear Technology Development and Economics
OECD Nuclear Energy Agency

Sfen - Aix en Provence – 14 October 2021


1. Context

Global Action Is Urgently Needed

- The magnitude of the challenge should not be underestimated
- The planet has a "carbon budget" of 420 gigatonnes of carbon dioxide emissions for the 1.5°C scenario
- At current levels of emissions, the entire carbon budget would be consumed within 8 years
- Emissions must go to net zero, but the world is not on track

Pathways to Net Zero Emissions

- Pathways based on the world's carbon budget, emissions reductions targets and timelines have been modelled and published by various organisations
- None of the published pathways project aspirational scenarios for nuclear innovation
- All published pathways include levels of nuclear energy deployment based on currently available commercial technologies
- Nuclear innovation does not feature prominently because of a lack of specialised expertise in nuclear technologies among modelling teams

Samples of ambitious and aspirational pathways to net zero

Organisation	Scenario	Parameter	2020	2050	Growth rate (2020-50)	
IIASA (2021)	Divergent Net Zero Scenario (1.5°C)	Cost of carbon (USD per tCO ₂)	0	1 647	-	
		Wind (in GWe)	600	9 371	1461%	
		Solar (in GWe)	620	11 428	1743%	
IEA (2021c)	Net Zero Scenario (1.5°C)	Hydrogen (MtH ₂)	90	530	490%	
		CCUS (GtCO ₂)	<0.1	7.6	-	
		Energy intensity (MJ per USD)	4.6	1.7	-63%	
Bloomberg NEF (2021)	New Energy Outlook Green Scenario (1.5°C)	Wind (in GWe)	603	25 000	4045%	
		Solar (in GWe)	623	20 000	3110%	

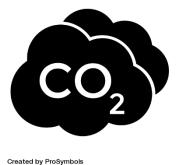
Nuclear in Emissions Reduction Pathways

	Scenario	Climate target	Nuclear innovation		Role of nuclear energy by 2050	
Organisation				Description	Capacity (GW)	Nuclear growth (2020-50)
IAEA (2021b)	High Scenario	2°C	Not included	Conservative projections based on current plans and industry announcements.	792	98%
IEA (2021c)	Net Zero Scenario (NZE)	1.5°C	Not included but HTGR and nuclear heat potential are acknowledged.	Conservative nuclear capacity estimates. NZE projects 100 gigawatts more nuclear energy than the IEA sustainable development scenario.	812	103%
Shell (2021)	Sky 1.5 Scenario	1.5°C	Not specified	Ambitious estimates based on massive investments to boost economic recovery and build resilient energy systems.	1 043	160%
IIASA (2021)	Divergent Net Zero Scenario	1.5°C	Not specified	Ambitious projections required to compensate for delayed actions and divergent climate policies.	1 232	208%
Bloomberg NEF (2021)	New Energy Outlook Red Scenario	1.5°C	Explicit focus on SMRs and nuclear hydrogen	Highly ambitious nuclear pathway with large scale deployment of nuclear innovation.	7 080	1670%

All pathways require global installed nuclear capacity to grow significantly, often more than doubling by 2050.

2. The Role of Nuclear Energy

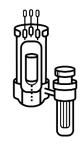
Nuclear Energy Today


444Nuclear reactors in operation globally

30Countries with nuclear reactors

10% of global electricity

emissions avoided since 1971

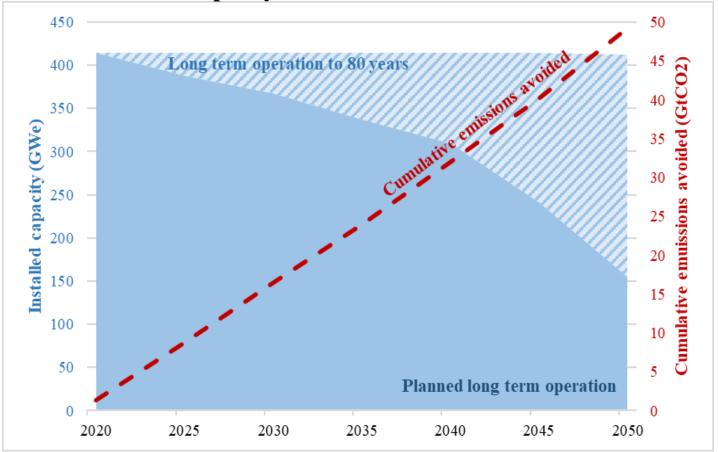


The Full Potential of Nuclear Energy to Contribute to Emissions Reductions

Long Term Operation

Gen-III Reactors Small Modular Reactors

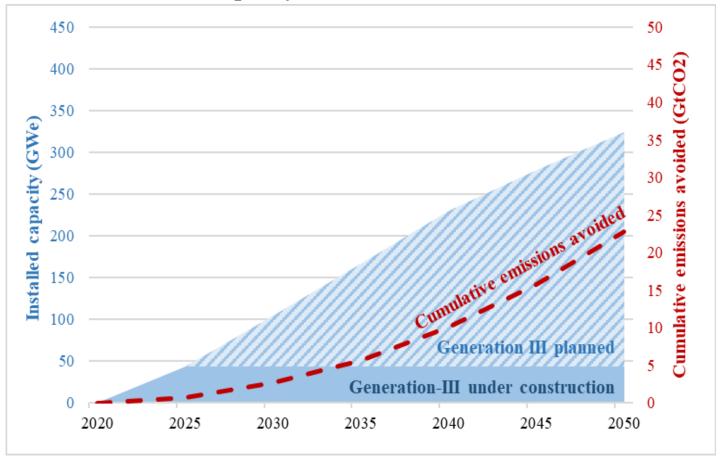
Non-Electrical applications



Long-term Operation

- Presently, the average age of nuclear power plants in OECD countries is 36 years
- The technical potential exists in most cases for long-term operation for several more decades
- Long-term operation is one of the most cost-competitive sources of low-carbon electricity
- Beyond technical feasibility, adequate policy and market are key conditions of success of long-term operation
- Long-term operation could save up to
 49 gigatonnes of cumulative
 emissions between 2020 and 2050

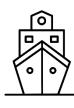
Installed Capacity And Cumulative Emissions Avoided



New builds of large Generation III nuclear technologies

- At the end of 2020, 55 gigawatts of new nuclear capacity in the form of large-scale Generation III reactors were under construction around the world driven largely by new builds outside the current OECD membership
- Taken together, large-scale
 Generation III reactors that are under
 construction and planned are
 expected to reach over 300 gigawatts
 of installed capacity by 2050, avoiding
 23 gigatonnes of cumulative carbon
 emissions between 2020 and 2050

Installed Capacity And Cumulative Emissions Avoided


Small Modular Reactors (SMRs) – Applications and Markets

On-Grid

- Larger SMRs (200-300 MWe) are designed primarily for on-grid power generation
- The size of SMRs is especially wellsuited to coal power plant replacement

Marine Merchant Shipping

- SMRs could provide a non-emitting alternative for marine merchant shipping propulsion
- SMRs for marine merchant shipping could yield significant emissions reductions as shipping remains a very hard-to-abate industrial sector

Off-Grid

- Smaller SMRs could create an alternative to diesel generation in remote communities and at resource extraction sites
- SMRs could be used to provide power as well as heat for various purposes such as district heating or mine-shaft heating

Heat

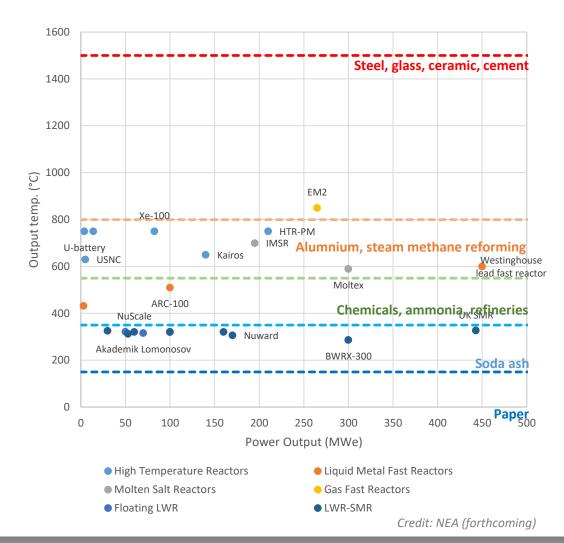
- Many SMRs designs will operate at higher temperatures, creating opportunities for decarbonization of hard-to-abate sectors
- High-temperature SMRs could create the first real non-emitting alternative to fossil fuel cogeneration by offering combined heat and power solutions for industrial customers

Small Modular Reactors – Ranges of Sizes and Temperatures

POWER

SMRs vary in size from 1 to 300 megawatts electric

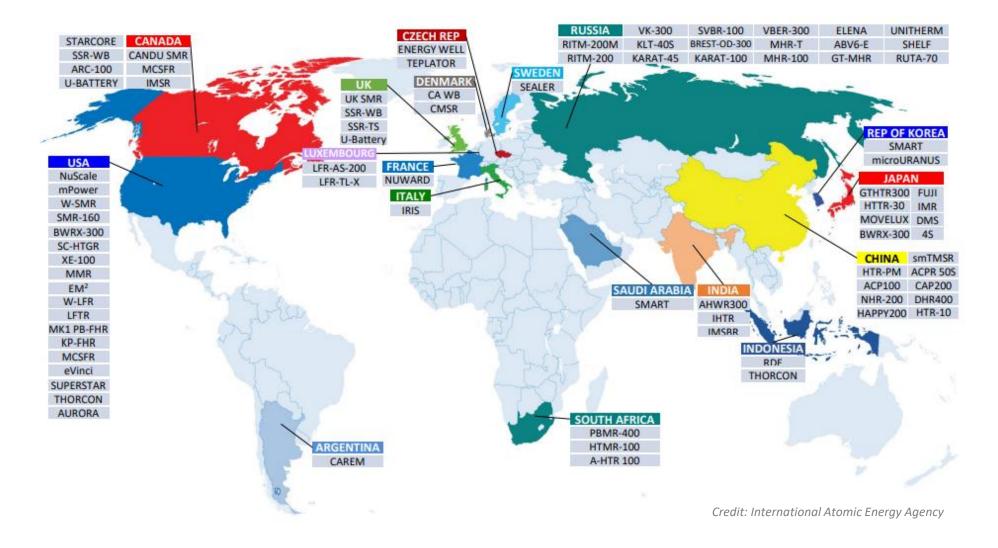
TEMPERATURE


 From 285°C to 850°C in the near-term and up to or over 1,000°C in the future

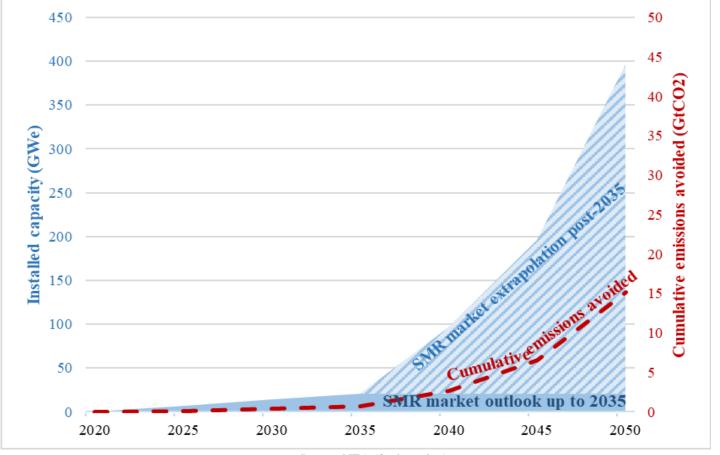
TECHNOLOGY

- Some SMRs are based on Generation III and Light Water reactor technologies
- Other are based on Generation IV and advanced reactor technologies

FUEL CYCLE

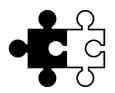

- Some SMRS are based on a once-through fuel cycle
- Other seek to close the fuel cycle by recycling waste streams to produce new useful fuel and minimize waste streams requiring long-term management and disposal

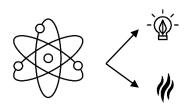
The Status of SMR Development Globally

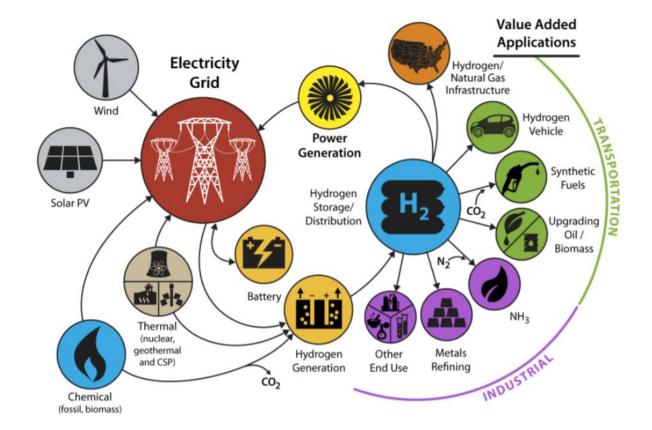


Small Modular Reactors

- Several SMR designs are expected to be commercially deployed within 5-10 years and ready to contribute to near-term and medium-term emissions reductions
- SMRs could see rapidly increasing rates of construction in net zero pathways
- Up to 2035, the global SMR market could reach **21 gigawatts**
- Thereafter, a rapid increase in build rate can be envisaged with construction between 50 and 150 gigawatts per year

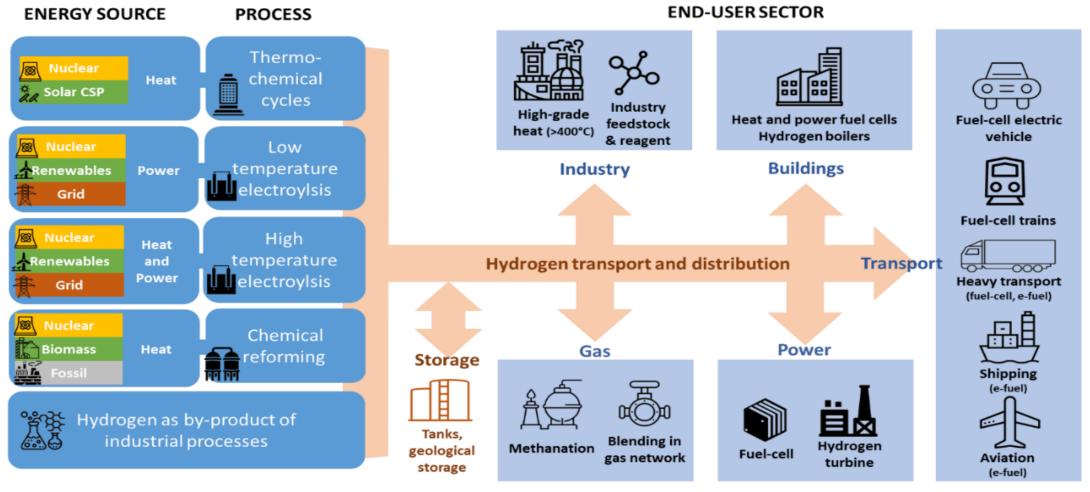

Installed Capacity And Cumulative Emissions Avoided


Nuclear hybrid energy systems including heat and hydrogen


There is **no silver bullet**, all available clean technologies have to contribute to decarbonization

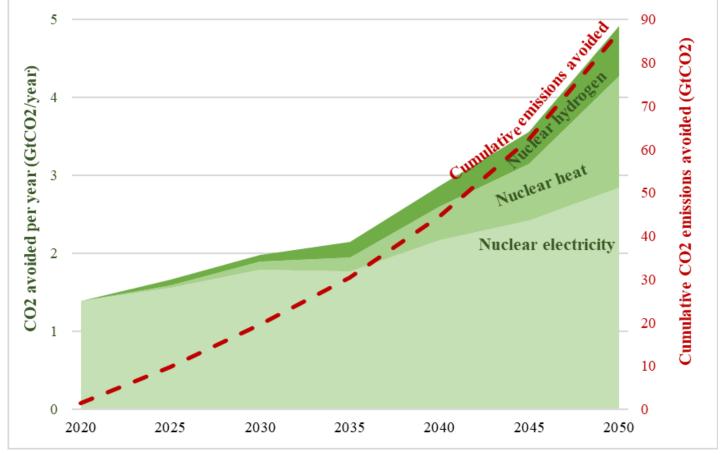
Electricity and clean-hydrogen is the new energy paradigm

As a reliable source of clean electricity and high heat, nuclear is a key pillar of future energy systems



Credit: US Department of Energy, Idaho National Lab

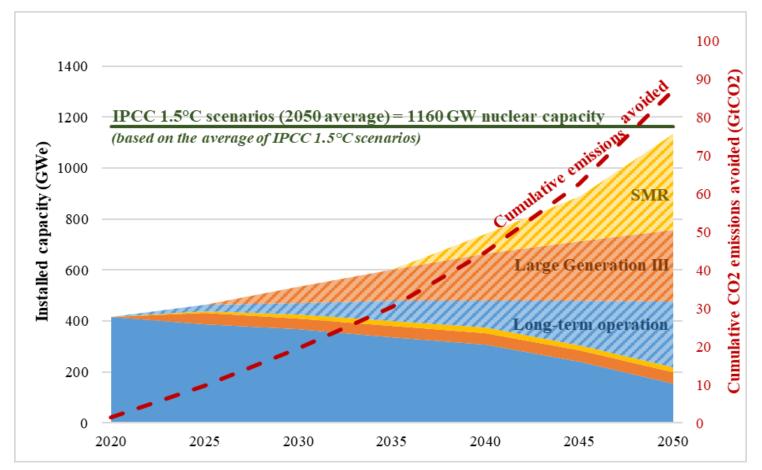
The Hydrogen Economy – sources, production processes, and end-uses



Power and Non-power Applications of Nuclear Energy

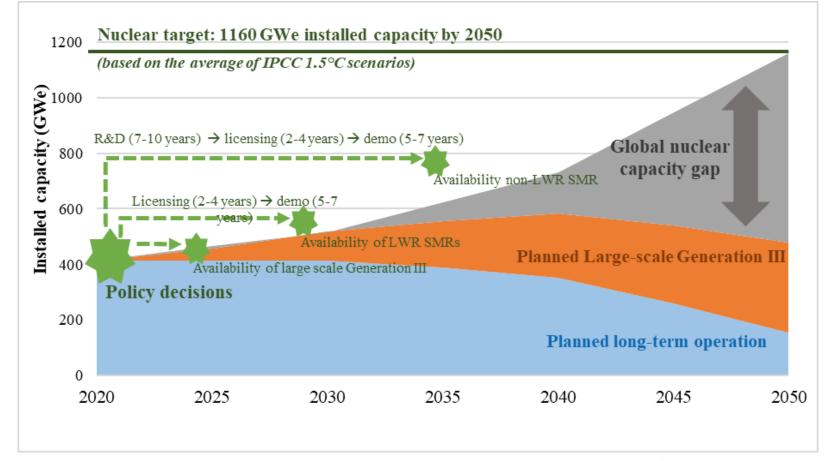
- Taken together, nuclear hybrid systems with non-electric applications including hydrogen can contribute to avoiding nearly 23 gigatonnes of cumulative emissions between 2020 and 2050
- Further, nuclear energy enables more extensive, more rapid, and more costeffective deployment of variable renewables, by providing much needed flexibility
- The role of nuclear energy in emissions reductions for future energy systems is therefore even greater

Carbon emissions avoided by nuclear power and non-power applications

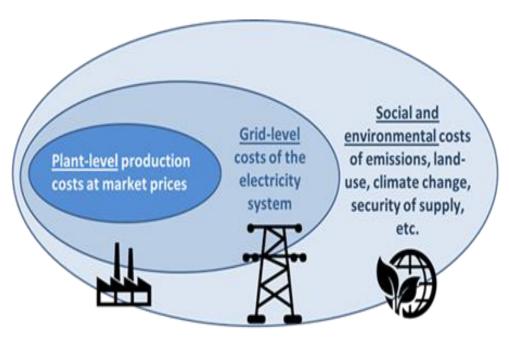


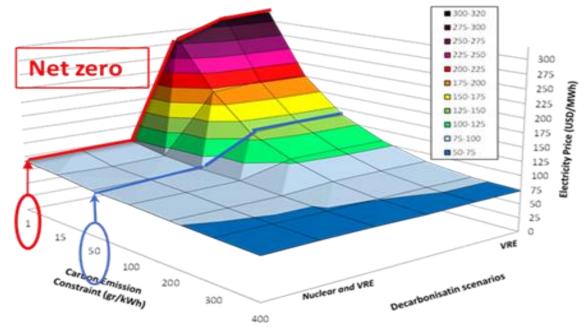
Full Potential of Nuclear Contributions to Net Zero

- The contributions from long-term operation, new builds of large-scale Generation III nuclear technologies, small modular reactors, nuclear hybrid energy and hydrogen systems project the full potential of nuclear energy to contribute to net-zero
- Reaching the target of 1160
 gigawatts of nuclear by 2050 would
 avoid 87 gigatonnes of cumulative
 emissions between 2020 and 2050,
 positioning nuclear energy's
 contribution to preserve 20% of the
 world's carbon budget most likely de
 to be consistent with a 1.5°C scenario


3. Delivering the Full Potential of Nuclear Contributions to Net Zero

Global Installed Nuclear Capacity Gap


- Under current policy trends, nuclear capacity in 2050 is expected to reach 479 gigawatts – well below the target of 1,160 gigawatts of electricity
- There is a projected gap between the minimum required global installed nuclear capacity and planned global nuclear capacity of nearly 300 gigawatts by 2050
- Owing to the timelines for nuclear projects, there is an urgency to action now to close the gap in 2030-2050


Understanding the costs of electricity provision

Understanding system costs of electricity

Source: Adapted from NEA (2012).

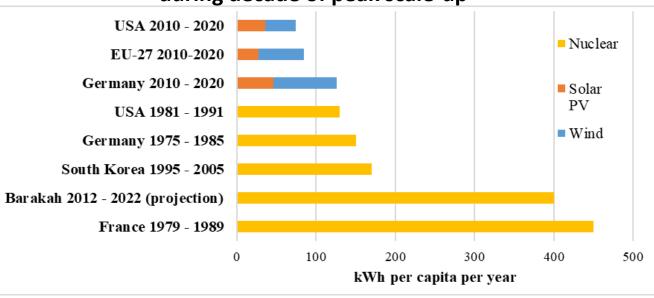
 To understand the costs of electricity provision requires systems level thinking combining plant-level costs, grid-level systems costs, and full social and environmental costs

Total costs for different mixes of electricity (driving to net-zero)

Source: Based on Sepulveda (2016)

• This 3-dimensional graph shows the effects on total costs as carbon emissions are increasingly constrained. The red line shows what happens to total costs when carbon constraints reach net-zero emissions.

Recommendations


1. Acting now

 Governments and industry should work together on an urgent basis to demonstrate and commercially deploy nuclear energy innovations

2. Addressing timelines

- Governments and industry should learn from successful examples of rapid deployment of nuclear to decarbonise electricity grids
- Regulators should collaborate to harmonise licensing approaches to enable efficient fleet deployment of nuclear innovations across international boundaries

Average annual increase of low-carbon electricity per capita during decade of peak scale-up

Recommendations (continued)

3. Understanding and reducing costs

- The *nuclear sector* should draw from recommendations made in the NEA (2020) study *Unlocking Reductions* in the Construction Costs of Nuclear: A Practical Guide for Stakeholders to ensure that the sector meets cost objectives
- Governments should take a systems level perspective when developing electricity policies to ensure that markets adequately value key nuclear features such as low carbon baseload, dispatchability, and reliability

4. Building public confidence

• Governments and industry should engage the citizenry to build trust and public confidence, ensuring that public dialogues about energy options are evidence-based. This involves addressing misinformation and ensuring that a realistic conversation about the pros and cons of various options is facilitated

5. Financing and investing

Governments should make investments in nuclear energy and support a technology neutral approach that
includes nuclear energy in taxonomies, climate finance, development finance, and ESG finance

Nuclear Reimagined

Credit: ThirdWay

Thank you for your attention